Package io.qdrant.client.grpc
Interface Points.QuantizationSearchParamsOrBuilder
- All Superinterfaces:
com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
- All Known Implementing Classes:
Points.QuantizationSearchParams
,Points.QuantizationSearchParams.Builder
- Enclosing class:
- Points
public static interface Points.QuantizationSearchParamsOrBuilder
extends com.google.protobuf.MessageOrBuilder
-
Method Summary
Modifier and TypeMethodDescriptionboolean
If set to true, search will ignore quantized vector datadouble
Oversampling factor for quantization.boolean
If true, use original vectors to re-score top-k results.boolean
If set to true, search will ignore quantized vector databoolean
Oversampling factor for quantization.boolean
If true, use original vectors to re-score top-k results.Methods inherited from interface com.google.protobuf.MessageLiteOrBuilder
isInitialized
Methods inherited from interface com.google.protobuf.MessageOrBuilder
findInitializationErrors, getAllFields, getDefaultInstanceForType, getDescriptorForType, getField, getInitializationErrorString, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof
-
Method Details
-
hasIgnore
boolean hasIgnore()If set to true, search will ignore quantized vector data
optional bool ignore = 1;
- Returns:
- Whether the ignore field is set.
-
getIgnore
boolean getIgnore()If set to true, search will ignore quantized vector data
optional bool ignore = 1;
- Returns:
- The ignore.
-
hasRescore
boolean hasRescore()If true, use original vectors to re-score top-k results. If ignored, qdrant decides automatically does rescore enabled or not.
optional bool rescore = 2;
- Returns:
- Whether the rescore field is set.
-
getRescore
boolean getRescore()If true, use original vectors to re-score top-k results. If ignored, qdrant decides automatically does rescore enabled or not.
optional bool rescore = 2;
- Returns:
- The rescore.
-
hasOversampling
boolean hasOversampling()Oversampling factor for quantization. Defines how many extra vectors should be pre-selected using quantized index, and then re-scored using original vectors. For example, if `oversampling` is 2.4 and `limit` is 100, then 240 vectors will be pre-selected using quantized index, and then top-100 will be returned after re-scoring.
optional double oversampling = 3;
- Returns:
- Whether the oversampling field is set.
-
getOversampling
double getOversampling()Oversampling factor for quantization. Defines how many extra vectors should be pre-selected using quantized index, and then re-scored using original vectors. For example, if `oversampling` is 2.4 and `limit` is 100, then 240 vectors will be pre-selected using quantized index, and then top-100 will be returned after re-scoring.
optional double oversampling = 3;
- Returns:
- The oversampling.
-